
Category Theory for Engineers

Larry A. Lambe ∗

NASA Consortium for Systems Engineering
llambe@mssrc.com

Final Report

20, September 2018

Independent Contractor Agreement with UAH

Period of Performance: 87 hours over the period

of August 01 – September 19, i2018

Multidisciplinary Software Systems Research Corporation
MSSRC

P.O. Box 401, Bloomingdale, IL 60108-0401, USA
http://www.mssrc.com
Technical Report: MSSRC-TR-01-262-2018

Copyright c© 2018 by MSSRC. All rights reserved.

∗Chief Scientist, MSSRC

1



Contents

1 Introduction 2

2 Review of Set Theory 3
2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Inverse Image and Partitions . . . . . . . . . . . . . . . . . . . 5
2.3 Products of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Equivalence Relations and Quotient Sets . . . . . . . . . . . . 7

3 Some Observations Concerning Sets 9
3.1 Sets as Nodes, Functions as Arrows . . . . . . . . . . . . . . . 10
3.2 The Set of All Arrows from one Set to Another . . . . . . . . 10
3.3 A Small Piece of the Set Theory Graph . . . . . . . . . . . . . 11

4 Directed Graphs and Free Path Algebras 12
4.1 The Free Non-Associative Path Algebra . . . . . . . . . . . . . 12
4.2 Degree of a Word . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 The Free Path Algebra . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 The Free Path Algebra With Identities . . . . . . . . . . . . . 15

5 Categories 17
5.1 Some Standard Terminology . . . . . . . . . . . . . . . . . . . 19
5.2 A Strong Correspondence Between Two Categories . . . . . . 19
5.3 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 The Dual of a Category . . . . . . . . . . . . . . . . . . . . . 21
5.5 Relations in a Category . . . . . . . . . . . . . . . . . . . . . . 21
5.6 Some Basic Mathematical Categories . . . . . . . . . . . . . . 23
5.7 The Category of Semigroups . . . . . . . . . . . . . . . . . . . 23
5.8 The Category of Monoids . . . . . . . . . . . . . . . . . . . . 23
5.9 The Category of Groups . . . . . . . . . . . . . . . . . . . . . 23
5.10 The Category of Abelian (Commutative) Groups . . . . . . . . 24
5.11 The Category of Commutative Rings with Identity . . . . . . 25
5.12 The Category of Fields . . . . . . . . . . . . . . . . . . . . . . 26
5.13 The Category of Modules over a Ring . . . . . . . . . . . . . . 26
5.14 The Category of Vector Spaces Over a Field . . . . . . . . . . 27



MSSRC Final Report, September 2018 2

5.15 The Free R-Module on a Set X . . . . . . . . . . . . . . . . . 27

6 A Categorical Properties of Modules Over a Ring 28

7 Cocones and a Look Toward Future Developments 29
7.1 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Conclusions 31
8.1 A Working Definition . . . . . . . . . . . . . . . . . . . . . . . 31

1 Introduction

This document was prepared using the hyperref macros in LaTeX web ref.
As a consequence, if the reader is connected to the Internet while reading
this, when you see an outlined box like the one in the previous sentence or
the following one, you can click on that box and hopefully see something
interesting like the following NGC 5949. Try it! It is about 44 million light-
years away in constellation Draco (one wonders what they are doing over
there).

The author of this document was motivated by the NASA document “En-
gineering Elegant Systems: Principals of System Engineering” by Michael
D. Watson EES [8], specifically, postulate two, “the Systems Engineering
domain consists of subsystems, their interactions among themselves, and
their interactions with the system environment” and postulate seven, “Un-
derstanding of the system evolves as the system development or operation
progresses”. The aim of the document is to provide a strong foundation for
a category theory interpretation of the postulates cited above.

The approach taken here views category theory as an organizational tool
for concepts concerned with the design of structures at all levels of size
and complexity. Such concepts include physics, mathematics, computational
techniques, and the management of group collaborations consisting of possi-
bly diverse subgroups; however these notes will emphasize the mathematical
and computational aspects of the applied theory.

It is assumed that the reader is familiar with set theory, statistics, basic
algebra and linear algebra, and differential equations at a university graduate
level. A good refresher for the necessary set theory is the book [6]. Because
of these assumptions, not all of the definitions and concepts in the review of
set theory below will be formally complete, but are intended as reminders.

https://www.latex-project.org/
https://www.nasa.gov/sites/default/files/thumbnails/image/potw1732a.jpg
https://ntrs.nasa.gov/search.jsp?R=20160003162
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To begin, the important notions of functions, partitions, equivalence re-
lations, and quotient sets will be discussed. These notions are important in
ways that will become evident in all that will follow.

The initial discussion leading to the definition of categories will be in
terms of directed graphs (digraphs). This approach and some notation involv-
ing it has been influenced by the classic reference [7, Chapter I §2]. Examples
will be presented both in terms of finite digraphs and much larger mathe-
matical structures where the graph structure is not easy to visualize globally.
Specifically, a quick review of set theoretic concepts, an intuitive “categori-
cal view” of sets and functions will be given. Following that, directed graphs
(digraphs) and a number of finite digraph based examples will be given and
categories will be defined. Then some basic mathematical structures that fit
into the categorical framework developed above will be presented. This will
include, semigroups, monoids, groups, rings, fields, modules over a ring, vec-
tor spaces, and algebras over a “ground ring”. These examples will be used to
provide intuition for notions of morphisms which generalize functions, func-
tors which are correspondences between categories that generalize functions,
and natural transformations that are correspondences between functors. The
notion of natural transformations first appeared in the influential paper [3]
which formally introduced category theory.

2 Review of Set Theory

Informally, a set X is a collection of objects which are called elements. If x is
an element of a set X we write x ∈ X. If an element in a set is included more
than one time, only one copy is considered and the others are ignored. So
elements in a set are considered to be distinct. The order in which elements
appear in a set is irrelevant. Thus, the set X = {2, 7, s, c, c, a, 2} is considered
to be the same as {7, a, s, c, 2}, etc.

A subset of X is a set A such that every element of A is an element of
X, i.e. A is “contained in” X. The notation A ⊂ X is used to denote thatA
is a subset of X and not all of X itself. To denote that A is a subset that
might also be the same as X, the notation A ⊆ X is used.

The cardinality, i.e. the number of elements, of a set X is denoted by
card|X| or just |X| when the context is clear. What this means is clear when
the number of elements of X is finite. When X is infinite, the situation is
more complicated. Intuitively, if the elements in X can be listed in order
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indexed by the natural numbers N = {0, 1, 2, . . .} we say that X is count-
ably infinite. Set theoretically, there are cardinalities larger than “countably
infinite” such as the cardinality of the real numbers. The interested reader
will find a discussion of infinite cardinal numbers in any standard textbook
on set theory.

The union of two subsets A and B of a set X is defined to be

A ∪B = {x ∈ X |x ∈ A or x ∈ B}. (1)

The intersection of two subsets A and B of a set X is defined to be

A ∩B = {x ∈ X |x ∈ A and x ∈ B}. (2)

It can occur obviously that A and B have no elements in common. In that
case, their intersection is empty and the sets are said to be disjoint. The set
with no elements is denotes by Φ. So A and B are disjoint if and only if
A ∩B = Φ.

The complement of a subset A ⊆ X is

Ac = {x ∈ X |x /∈ X} (3)

where the symbol /∈ is read “not in”. Another notation that is often used is
Ac = X − A.

2.1 Functions

A function f from a set X to a set Y is a correspondence such that to each
element x ∈ X there exists a unique element y ∈ Y that corresponded to it
(by assignment). This correspondence is written y = f(x). We also say that
y ∈ Y is “hit by x” when y = f(x). This is consistent with the convention
of calling X the source and Y the target of f . That convention will be used
throughout this note.

Remark 2.1 Another way of rephrasing the definition above that is useful
in defining functions in particular cases of the statement, “if x = y in X,
then f(x) = f(y) in Y ”. When a correspondence f satisfies this definition,
i.e. is a function, the correspondence is said to be “well-defined”.

The notation X
f // Y is quite often used to denote that f a function

from x to Y and the assignment of f(x) to x is denoted by x 7→ f(x) which
is read, “x maps to f(x)”.
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Remark 2.2 A function X
f // Y is said to be onto if every element in

Y is of the form f(x) for some element in X.
The function is said to be one-to-one (or just one-one) if f(x) = f(x′)

implies x = x′.

Remark 2.3 An important “operation” involving functions is called compo-

sition. Given two functions X
f // Y and Y

g // Z there is an associated

function X
g◦f // Z defined by (g ◦ f)(x) = g(f(x)) for each x inX.

In addition, as pointed out in section 2.5, for any set X, there is the

identity function X
idX // X defined by idX(x) = x for all x ∈ X. It is noted

here that with respect to composition of functions, for an function X
f // X

we have that

(idX ◦ f)(x) = idX(f(x)) = f(x), and (4)

(f ◦ idX)(x) = f(x) (5)

so that we always have idX ◦ f = f and f ◦ idX = f for functions f that map
X to X.

2.2 Inverse Image and Partitions

Given a function X
f // Y and y ∈ Y , the inverse image of y is the subset

f−1(y) = {x ∈ X | f(x) = y}. (6)

Consider the set
P = {f−1(y) | y ∈ Y }. (7)

Remark 2.4 If f−1(y)∩ f−1(y′) 6= Φ, then there is an element x ∈ X such
that f(x) = y and f(x) = y′ and since f is well-defined (see remark (2.1) ,
this implies that y = y′. This means that the distinct elements of the set of
inverse images P above are all pairwise disjoint.

Also note that the union of all of the sets in P is all of X since the union
is clearly a subset of X, but if x ∈ X, then obviously, x ∈ f−1(f(x)) so that
x is in the union of all inverse images.
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A set of pairwise disjoint subsets of a set X whose union is all of X is
called a partition of X.

2.3 Products of Sets

If X1, X2, . . . , Xn is a list of sets for any n ≥ 2 the product of these e sets
in the given order is

X1 ×X2 × . . .×Xn = {(x1, x2, . . . , xn) |xi ∈ Xi, i = 1, . . . , n}. (8)

The element (x1, x2, . . . , xn) is called an n− tuple. When n = 2 it is usually
called an “ordered pair”.

2.4 Relations

A relation in X is any subset R ⊆ X × X. The notation x
R
// x′ if and

only if (x, x′) ∈ R will often be used in this note.

Remark 2.5 The relation

∆ = {(x, x) ∈ X ×X |x ∈ X} (9)

is the relation of equality. A given element x ∈ X is related to an element x′

if and only if x = x′. The equality relation ∆ is also called the diagonal.

Note that the graph Gf = {(x, f(x)) |x ∈ X} of a function f is a relation
in X. So functions may be thought of as special kinds of relations. In fact,
the graph of the identity function

X
idX // Y (10)

x 7→ x (11)

is ∆ which is the geometric reason it is called the diagonal.

Remark 2.6 Given a relation R ⊆ X ×X the opposite relation is

Rop = {(x′, x) | (x, x′) ∈ R}. (12)
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2.5 Equivalence Relations and Quotient Sets

A relation E ⊆ X × X is called an equivalence relation if and only if it
satisfies the three properties given by

1. ∆ ⊆ E, i.e. x
E
// for all x ∈ X.

2. Eop ⊆ E, i.e. if x
E
// x′ then x′

E
// x , and

3. if x
E
// x′ and x

E
// x′′ then x

E
// x′′

A relation E that satisfies 1. above is called reflexive. It is called symmetric
is it satisfies 2 above and it is called transitive is it satisfies 3..

An equivalence class for an equivalence relation E on X is defined for
each element of X to be

[x]E = {x′ ∈ X | x
E
// x′ }. (13)

When the context is clear, the subscript E is dropped from [x]E and we
simply write [x] for the equivalence class of x.

Remark 2.7 The set of equivalence classes in X is defined to be the set of
subsets

X/E = {[x] |x ∈ X}. (14)

In fact, X/E is a partition of X. To see why, assume that [x] ∩ [x] 6= Φ.

Then there is some element z in both classes, i.e. x
E
// z and x′

E
// z so

since z
E
// x by symmetry and transitivity, we have x′

E
// x . Similarly,

x
E
// x′ .

So suppose that x′′ ∈ [x]. Then symmetry and transitivity with the above

implies x′′
E
// x′ so that [x] ⊆ [x′]. Analogously, [x′] ⊆ [x] since every

element x′′ will also be in [x] by the same reasoning and so [x] = [x′] and
hence X/E is a partition.

The set X/E is called the quotient set of X by E. It is an important
construction in mathematics. Note that if x and x′ are related in X by
E, then [x] = [x′] in X/E. Thus intuitively, taking quotient sets turns
“equivalence” to “equality”.
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Remark 2.8 While it is true that equivalence “becomes” equality at the level
of set theory, one has to be careful not to overgeneralize such a notion to other
situations that will be encountered later in category theory.

Exercise 2.1 Consider an equivalence relation E on a set X and the corre-
spondence defined by

X
q // X/E (15)

x 7→ [x]. (16)

1. Prove that q is well-defined, i.e. if x = x′ then q(x) = q(x′).

2. How does the partition P = {q−1([x]) | [x] ∈ X/E} compare to the
partition X/E?

3. What does this say about functions, equivalence relations, and parti-
tions?

Exercise 2.2 Let Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} denote that set of all
integers.

Recall the result of the division algorithm from grammar school (some-
times called “long division”):

Given an integer a ∈ Z and a non-negative integer n, there is an
integer q ∈ X (called the quotient) such that a = q n + r where
r ∈ Z and 0 ≤ r < n.

Fix a non-negative integer n.

1. Prove that the relation modn

a
modn

// b if and only if a = b+ qn for some q ∈ Z (17)

defines an equivalence relation on Z.

2. Prove that for each [a] ∈ Z/modn there is a unique non-negative integer
r such that [a] = [r] so that the set of equivalence classes Z/modn is in
one-to-one correspondence with the finite set {0, 1, . . . , n− 1}.

Note that we usually simply write Z/modn as Z/n
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Exercise 2.3 Show that the intersection of any number of equivalence rela-
tions is an equivalence relation. Thus if R ⊆ X ×X is any relation, there is
a smallest equivalence relation containing it, viz, the intersection of all equiv-
alence relations containing it (note that X×X is an equivalence relation that
contains any such R)

Remark 2.9 Note however that your proof may not be constructive. There
are algorithms however that do construct such a smallest equivalence relation
“extension” of a given R. The easy part is making a given R reflexive and
symmetric in a minimal way. If it is not reflexive, simply take R′ = ∆ ∪ R
where ∆ is the diagonal. If that is not symmetric, take R′′ = R′ ∪ (R′)op. R′′

will then contain R and be reflexive and symmetric. The “tedious” part is in
making R′′ transitive if it is not already so. Doing that in a minimal way is
said to produce the transitive closure of R′′ which will then be an equivalence
relation. There are efficient algorithms for calculating the transitive closure.
A search on the Internet for “transitive closure” recently produced 852, 000
results. Of note is Warshall’s algorithm and more recently parallelized ver-
sions which may also be found on the Internet.

Remark 2.10 Note that since the entire product set X×X is an equivalence
relation, any relation R ⊆ X × X is contained in a unique equivalence re-
lation, namely the intersection of all equivalence relations in X that contain
R.

For an interesting discussion of quotient sets in topology, the interested
reader should see [2, §4.5 Adjunction spaces].

3 Some Observations Concerning Sets

There are logical problems in thinking about the notion of a set of all sets.
One cannot simply allow any proposition to define a set. The classic example
is Russell’s paradox [5] which is about the specification of a set X which
does not contain itself as an element (one asks if X is an element of X
and considers the consequences. Then one asks if X is not an element of
X to see the paradox). For many reasons including such paradoxes (there
are more than just Russell’s), there are axiomatic treatments of set theory
[11] which avoid such paradoxes. There are various conventions for talking
about a container for all sets and other collections that are “too big” to be
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sets. A discussion of such conventions is given in [7, Chapter I, §6,§7.]. The
convention taken here is to talk about a kind of universal container, called
a class which may contain all sets without logical difficulties. The formal
reasons that this can be done require a proper reading of references such as
the three mentioned above and will be left to the interested reader.

A class that is not a set will be called a proper class. A class that is not
a proper class is called a small class.

3.1 Sets as Nodes, Functions as Arrows

A notation for specifying a function f from a set X to Y , viz. X
f // Y has

already been discussed. It suggests a kind of graph structure on the class of
all sets. Indeed, in section 2.1, X has already been called the source and Y
the target of f , so we alternately call a function f an arrow in this context.
This leads to aa view of sets and functions as “nodes” and “arrows” of a
graph structure (a rather large one admittedly).

3.2 The Set of All Arrows from one Set to Another

We will often denote the set of all functions from a set X to a set Y by
[X, Y ]Set. Here we will consider the number of possible functions fro one
finite set to another, i.e. the cardinality of the set [X, Y ]Set when X and Y
are finite. To begin, consider the set X = {0} with one element and the
set Y = {0, 1, ..., n− 1} is elements with n elements. Clearly, the number of
choices of a correspondence of 0 to a unique element in Y is exactly n. We
may denote these functions by fi(0) = i for i = 0, . . . n− 1.

Now consider all functions from X = {0, 1} to itself. All such functions
may be conveniently denoted by

fi,j =

(
0 1
i j

)
. (18)

where i, j ∈ Y with the possibly that i = j. It is easy to write down all of
the choices, viz.(

0 1
0 0

)
,

(
0 1
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
. (19)

Continuing, the distinct functions from X to Y = {0, . . . , n − 1} may be
enumerated by filling in the symbols i, j in the expression in (18) above
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where this time i, j inY = {0, . . . , n − 1} (with the possibility that i = j
again. Obviously, there are n choices for associating (or “mapping”) 0 and
following that, there are n choices for mapping 1. In all, this makes n ·n = n2

choices.
Finally, consider the number of functions from X = {0. . . . , n − 1} to

Y = {0 . . . ,m− 1} which can be enumerated by the expressions(
0 . . . n− 1
i0 . . . in−1

)
(20)

where ij ∈ Y with possible repeats. Again, clearly, there are m choices for
0, m choices for 1 and so on, making m ·m. . . ·m = mn choices in all.

Remark 3.1 A moment of thought shows that the same argument can be
made for any finite sets X and Y in terms of counting functions because the
counting argument does not depend upon what the elements of a finite set are
labeled. The counting is the same is we label elements as 0, 1, 2 or a, b, c, etc.

Thus, we see that the cardinality of [ {0, . . . , n − 1}, {0, . . .m − 1}]Set is
exactly mn. In other words,

| [X, Y ]Set | = |Y ||X|. (21)

Because of this result, the notation Y X is sometimes used to denote [X, Y ]Set.

3.3 A Small Piece of the Set Theory Graph

Consider just the collection of sets {0}, {0, 1} and their arrows. Let 0̄ = {0}
and 1̄ = {0, 1}. There 11 = 1 function from 0̄ to itself, 21 = 2 functions from
0̄ to 1̄, 12 = 1 function from 1̄ to 0̄, and 22 = 4 functions from 1̄ to itself.
Thus, there are 8 arrows involving the two sets 0̄ and 1̄.

Exercise 3.1

a. Draw a graph with two nodes labeled 0̄ and 1̄ and the 8 arrows men-
tioned above. Note that 3 of the arrows map one node to another while
one arrow is a “loop” at one node and 4 arrows are loops at the other
node.

b. Construct a table that identifies all possible compositions (as functions)
or the 8 arrows for which it is possible to form composite functions.
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Remark 3.2 Note that the exercise above hints at how complicated the full
graph of all finite sets of the form {0, 1, 2, . . . , n − 1} is for n ≤ 1, 2, 3, . . ..
Adding the thrust of remark (3.1) to this observation, one can see a kind of
crystalline structure in the “set theory graph”.

4 Directed Graphs and Free Path Algebras

A directed graph (digraph) G = {G0, G1; s, t} consists of two sets G0 and

G1 along with two functions G1
s // G0 , G1

t // G0 . The function s is
called the source function and t is called the target function. We will use the
following notation for this situation.

G1

s //
t
// G0 , (22)

The elements of G0 are called nodes or vertices. The elements of G1 are
called arrows.

An arrow a ∈ G1 such that s(a) = t(a) is called a loop arrow or just a
loop (at the node s(a)).

The following implicitly defines a typical digraph.

G0 = {a, b, c, d, e} (23)

G1 = {[a, b], [b, e], [c, c], [c, d], [d, c], [e, e], [e, d], [e, a]}. (24)

The arrows are denoted by lists of the form α = [x, y] where s(α) = x and
t(α) = y. This is not a universally used convention, but in some instances, it
is convenient. Thus, the loops in the above graph are [c, c] and [e, e]. Figure
(1) illustrates the corresponding digraph.

4.1 The Free Non-Associative Path Algebra

The reason for the title word “Non-Associative” will be explained in the next
section.

Given a digraph G = {G0, G1; s, t}, define a sequence of sets Ĝ1,n induc-
tively as follows.

• Ĝ1,1 = G1.
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Figure 1: A Typical Digraph

• Ĝ1,2 is the set of all parenthesized juxtapositions (ab) of elements in

Ĝ1,1 such that s(b) = t(a), i.e. Ĝ1,2 = {(ab) | a, b ∈ Ĝ1,1, s(b) = t(a)}.

• For (ab) ∈ Ĝ1,2, define an extension of the source and target functions
by s((ab)) = s(a) and t((ab)) = t(b).

Suppose that we have G1,k as well as extensions of s and t for 2 ≤ k < n

• Ĝ1,n is the set of all parenthesized juxtapositions of elements (cd) where
c ∈ G1,i and d ∈ G1,j with 1 ≤ i, j and i+ j = n and s(d) = t(c).

Note that every element α ∈ Ĝ1,n consists of a sequence a1, a2, . . . , an ∈
G1 with parentheses in various positions between the ais and s(α) = s(a1), t(α) =
t(an).

Now define
Ĝ1 = ∪n≥1Ĝ1,n (25)

and let
Ĝ1 ×G0 Ĝ1 = {(a, b) ∈ Ĝ1 × Ĝ1 | s(b) = t(a)}. (26)

Finally, define an operation called “composition” by

Ĝ1 ×G0 Ĝ1 → Ĝ1 (27)

(a, b) 7→ (ab). (28)

This operation is often denoted by a ◦ b = (ab).
Note that he operation is well defined since any element a must be an

element of some Ĝ1,i and similarly, b must be an element of some Ĝ1,j so

(ab) ∈ Ĝi+j ⊆ Ĝ1.
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4.2 Degree of a Word

As defined above, every element α ∈ Ĝ1 consists of a sequence a1, . . . , an ∈ G1

with parentheses in various positions between the ais for some n. We call α
a word in the indicated elements. We define the degree of such an element to
be deg(α) = n. More can be said however, by construction, α is actually a
concatenation of an element from Ĝ1, i and Ĝ1, j where i+ j = n. We define
the bidegree of α to be (i, j).

4.3 The Free Path Algebra

Associativity Generally, a function S × S m // S such thatm(m(a, b), c) =
m(a,m(b, c)) for all a, b, c ∈ S is called an associative operation. If we write
m(a, b) = ab, this become the more familiar rule that a(bc) = (ab)c as is
known to hold for the usual operation of multiplications of integers and com-
position of functions, for example. Because these two expressions are equal,
one can unambiguously write abc for either one of them thereby forgetting
about any parentheses in products of such elements.

The free associative path algebra on graph G = {G0, G1; s, t} is a mathe-
matical structure that is much easier to visualize than the free non-associative
one because of the comments above. In Ĝ2 there are distinct elements of the
form (a(bc)) and (a(bc)) which indeed indicates that the path product m is
not associative in general, but if associativity is assumed, all parentheses can
be removed and all words of degree n are simply concatenations of n elements
from G1 such that the source of a factor of the concatenation whose position
is greater than one is the target of the previous factor.

Generally, we call the free associative path algebra simply the free path
algebra, dropping the word “associative”. If we need to refer to the non-
associative path algebra, the word “non-associative” will be explicitly used.

The free path algebra on a graph G = {G0, G1; s, t} will be denoted by
P(G).

Example 4.1 Consider the digraph defined by G0 = {1}, G1 = {a} and
s(a) = 1; t(a) = 1. This graph is illustrated in figure (2). Clearly, in this
case, the set of all path products is Ĝ1 = {a, aa, aaa, aaaa, . . .}. We can
abbreviate the notation by writing a1 = a and aa . . . a (n-times) as an. By
the definition of path product and associativity, we then clearly have an◦am =
an+m.



MSSRC Final Report, September 2018 15

Figure 2: A one node, one arrow digraph

Remark 4.1 A set S with an operation

S × S ◦ // S (29)

which is associative is called a semigroup. Thus, in example above, the free
path algebra Ĝ1 is an example of a semigroup.

4.4 Identities

In ordinary multiplication of integers which we write as Z, the distinguished
element 1 has the property that 1 · n = n and n · 1 = n for all n ∈ Z. Such
an element is called an identity element. The path algebra on a graph G may
possess identity elements “at each node” is there is a distinguished arrows
that satisfy the property that, in addition to the source and target maps s
and t, there is a function

G0
ids // G1 (30)

such that
s ◦ ids = idG0 , and t ◦ ids = idG0 (31)

These conditions imply that at each node n ∈ G0, there is an arrow which we
will denote by idn = ids(n) such that s(idn) = s(ids(n)) = n and t(idn) =
t(ids(n)) = n, i.e. that each idn is a loop at n for all nodes in G0.

With the conditions above, it is assumed that the idn loops act as identity
elements in the path algebra P(G). This combined structure is described
succinctly below.

4.5 The Free Path Algebra With Identities

The free path algebra with identities has following structure.
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P(G)
s //
t
// G0 , (32)

along with

G0
ids // P(G) (33)

such that

s ◦ ids = idG0 (34)

t ◦ ids = idG0 (35)

with an induced associative operation

Ĝ1 ×G0 Ĝ1
m // Ĝ1 (36)

such that the loops idn for n ∈ G0 act as identities.

Example 4.2 Consider the digraph defined by G0 = {0}, G1 = {id0, 1},
s(1) = 0; t(1) = 0, s(id0) = 0; t(id0) = 0 and identity ids(0) = id0. This
graph is illustrated in figure (3) (with the identity arrow id0 omitted but as-
sumed). (2). In this case, we will write the operation of path product as +.

Figure 3: A one node, one arrow, one identity digraph

Thus, the set of all path products is Ĝ1 = {id0, 1, 1 + 1, 1 + 1 + 1, . . .}. Again
we can abbreviate the notation, but this time, we will write 1 + 1 + . . . + 1
(n-times) as n. By the definition of path product and associativity, we then
clearly have n ◦m = n + m where, on the left we mean 1 + . . . + 1 n + m-
times. Note that in this case, we also have n + m = m + n as is clear from
the definition of path product in this case. Also, by the properties of identity
loops, we have id0 +n = n and n+ id0 = n. We denote id0 in this case by 0.



MSSRC Final Report, September 2018 17

Remark 4.2 A set M with an operation

M ×M ◦ //M (37)

which is associative andhas an identity element is called a monoid. Thus,
in example above, the free path algebra Ĝ1 with identities is an example of
a monoid (where we write the operation as + instead of ◦ in this case, but
more can be said. We have that

Ĝ1 = {0, 1, 2, . . . , n, . . .} (38)

with 0 + n = n, and n+m = m+ n. This monoid is the same as the set of
non-negative integers with addition and identity element zero.

5 Categories

The above free (associative) path algebra with identities is a model for the
general definition of a category; however, while this mathematical structure
was constructed artificially, we have seen a naturally occurring example, viz.
sets, functions, composition of functions, and identity maps. This last com-
ment needs some explanation and that is given below where we present sets
and functions as a category.

In general, while we take the free path algebra with identities as a model
for categories, we do not require a category to be exactly of this form, In
fact, the definition of a category is as follows.

Definition 5.1 A category C consists of two classes C0 and C1 and two well
defined correspondences

C1

s //
t
// C0 (39)

so that s ◦ ids = idC0 and t ◦ ids = idC0. It furthermore is supposed that
there is an operation ◦ of the form

C1 ×C0 C1
◦ // C1 (40)

(where C1 ×C0 C1 = {(f, g) |C1 × C1, s(g) = t(f)}) which is associative and
for which there are identities with respect to this operation.

C0
ids // C1 (41)
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We will always denote categories with an underline as in C.

Remark 5.1 The free path algebra with identities satisfies this definition
with respect to ◦ given by the path product. Thus, G = (G̃1, G0, s, t, ids) is
a category. It is called the free category on the digraph with identity loops
(G0, G1, s, t, ids).

Example 5.1 Here is an Interesting yet very simple category.
Consider the digraph given by G0 = {n}, G1 = {idn, 0, 1}, s(0) = n; t(0) =

n, s(1) = n; t(n) = n, and identity ids(n) = idn. This graph is illustrated in
figure (4) (again with the identity loop omitted but assumed).

Figure 4: One node, two arrows, and one identity arrow

This time, Ĝ1 consists of the identity loop idn and all words in 0 and
1. Note however that 01 is not the same as 10. Nonetheless, this set is a
monoid.

Example 5.2 Consider the digraph with Set0 equal to the proper class of all
sets and Set1 equal to the class of all functions from a set to any other set.

For a function X
f // Y , we have s(f) = X and t(f) = Y . We interpret the

path product as composition of functions The identities are ids(X) = idX .
Since composition of functions is associative, this structure which will be
denoted by Set is a category.

Remark 5.2 Consider again the category from example (5.1) which we will
denote by Mach. If we interpret the words not equal to the identity idn as
encoding words in English via the ASCII encoding [1], the phrase

01001000 01100101 01101100 01101100 01101111

01110111 01100111 01110010 01101100 01100100
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which reads “Hello world” is encoded in the category Mach.
It is interesting to note that all of written history may be encoded in this

small category.

5.1 Some Standard Terminology

Let C = (C0, C1, s, t, ids) be a category. The class of nodes C0 is often called
Ob(C) and the class of arrows C1 is called Arr(C). For two objects (nodes)
c1, c2 ∈ Ob(C) the class of all arrows from c1 to c2 is denoted by either [c1, c2]C
or homC(c1, c2).

5.2 A Strong Correspondence Between Two Categories

Consider two one node two loop categories generated freely by the graphs in
figure (5). Let C denote the category generated by the digraph on the left.

Figure 5: Two one node, one arrow, one identity digraphs

As in example 4.2, let n denote 1 + . . .+ 1 (n-times) and let 0 denote id0.
The set of arrows of C is

Arr(C) = {id0, 1, 2, . . . , n, . . . , } (42)

and the path product is n ◦m = n+m.
As in example 4.1, let an denote aa . . . a (n-times). For this example

however, we include the identity id1 which we denote by 1. The set of arrows
is

Arr(C ′) = {1, a, aa, . . . , a, . . .} (43)

and the path product is an ◦ am = an+m.
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Now it is quite apparent that these two categories are essentially the
same. However, the word “essentially” needs to be made more

To make a complete comparison, we need to compare nodes, identity
loops, and other arrows of both categories. That means that we need not only
a correspondence between Ob(C) and Ob(C ′), but also one betweenArr(C)
and Arr(C ′).

Figure 6: Comparing two categories.

Figure (6) gives such correspondences, viz. we define

Ob(C)
exp // Ob(C ′) (44)

0 7→ 1 (45)

and

Arr(C)
exp // Arr(C ′) (46)

n 7→ an. (47)

Both of these correspondences are well-defined and furthermore, they are
clearly one-one and onto and have inverses. In fact, we have that the inverse
functions are given by

Ob(C ′)
log // Ob(C) (48)

1 7→ 0 (49)

and

Arr(C ′)
log // Arr(C ′) (50)

an 7→ n. (51)
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Note furthermore, that these functions preserve path products, viz. exp(n+
m) = an+m = anam = exp(n)exp(n) and log(anam) = log(an+m) = n + m =
log(an) + log(am) Because of this, we say that the two categories are isomor-
phic, i.e. they are essentially the same category.

5.3 Functors

A functor between two categories is a generalization of the above exam-
ple; however, in general, they are much weaker than being isomorphisms, of
course.

A functor C
f // D consists of correspondences of the form

Ob(C)
f // OB(D) (52)

and

homC(C,D)
f // homD(f(C), f(D)) (53)

for every pair of objects C,D ∈ C such that compositions are preserved, i.e.]
on morphisms, f(β ◦ α) = f(β) ◦ f(α).

Such a functor is sometimes called acovariant functor because it preserves
the direction of arrows. Shortly, we will see an example of a functor that
reverses the direction of arrows. That kind of functor is called a contravariant
functor.

5.4 The Dual of a Category

Given a category C = (C0, C1, s, t, ids), the dual category Cop has the same
class of objects as C, but its arrows are reversed, i.e. sop = t and top = s.

Note that a contravariant functor C
f // D is the same as a covariant

functor Cop f // D

5.5 Relations in a Category

Relations in a category C are relations Rc1,c2 in homC(c1, c2) for all c1, c2 ∈
Ob(C). Thus, Rc1,c2 ⊆ homC(c1, c2)× homC(c1, c2). As with sets, a relation
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Ec1,c2 is called an equivalence relation if it is reflexive, symmetric, and tran-
sitive. We say that the family {Ec1,c2} is preserved by compositions if the
correspondence

homC(c1, c2)/Ec1,c2 × homC(c2, c3)/Ec2,c3 → homC(c1, c3)/Ec1,c3 (54)

given by
[g] ◦ [f ] = [g ◦ f ] (55)

is well-defined (see section 2.1).

Exercise 5.1 Being well-defined in the case directly above means that the
correspondence

([g], [f ]) 7→ [g ◦ f ] (56)

actually defines a functional correspondence. In other words, the assignment
is unique, and in still other words, that if ([g], [f ]) = ([h], [k]) then [g ◦ f ] =
[h ◦ k].

The above amounts to saying that if g is related to g′ and h is related to
h′, then g ◦ f is related to h ◦ k. So there is nothing really to “prove” here,
it is an exercise in unraveling definitions. The exercise, such as it is, is to
identify precisely where all of this is “going on” in the category in question.
That involved the specific “hom”s and Ec,c′s involved, etc.

Remark 5.3 If it is required to design a category for some specific use one
way to proceed consists of specifying an appropriate digraph, specifying re-
lations in the corresponding free category that the digraph generates and ex-
tending those relations to equivalence relations that preserve compositions (as
specified in the exercise above). The category formed by taking the quotient
classes of the arrows by the given equivalence relations is then the desired end
category.

It is possible to extend relations as above to equivalence relations that pre-
serves compositions. Earlier, an exercise (2.3) showed that there is a small-
est equivalence relations containing a given relation. The same consideration
may be used to construct a smallest equivalence relation that preserves com-
positions (when they are present). The interested reader should also see [7,
Chapter I §8].
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5.6 Some Basic Mathematical Categories

5.7 The Category of Semigroups

Semigroups were defined in section 4.1. The category SemiGp has ob-
jects consisting of all semigroups and arrows (or morphisms as they are also

called) all functions S1
f // S2 on the underlying sets that satisfy f(st) =

f(s)f(t). The set of arrows is denoted as usual by either [S1, S2]SemiGp or
homSemiGp(S1, S2). Such morphisms are called semigroup maps or semigroup
morphisms.

5.8 The Category of Monoids

Monoids were defined in section 4.2. The category Monoid has object con-
sisting of all monoids and arrows (or morphisms as they are also called) all

functions M1
f //M2 on the underlying sets that satisfy f(st) = f(s)f(t)

and f(1) = 1. The set of arrows is denoted as usual by either [M1,M2]Monoid

or homMonoid(M1,M2). Such morphisms are called monoid maps or monoid
morphisms.

5.9 The Category of Groups

A group G is a monoid such that every element g ∈ G has an inverse denoted
by g−1. That means that gg−1 = 1 and g−1g = 1.

The category Grp has object consisting of all groups and arrows (or

morphisms as they are also called) all functions G1
f // G2 on the un-

derlying sets that satisfy f(ab) = f(a)f(b) and f(1) = 1. It follows that
f(g−1) = f(g)−1. The proof of this fact is left to the reader.

The set of arrows is denoted as usual by either [G1, G2]Grp or homGrp(G1, G2).
Such morphisms are called group maps or homomorphisms (a word that, his-
torically, no doubt inspired the word “morphism” in general).

Remark 5.4 In all cases of semigroups, monoids, and groups, if the oper-
ation satisfies and additional condition called commutativity, viz. xy = yx
for all x and y in the underlying set object, the operation is denoted by ”+”
instead of · (or just juxtaposition) and the identity element is denoted by 0
instead of 1.
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Thus, if G is a commutative group then x+ y = y + x for elements of G
and for all x in G, we have x + 0 = x and x + (−x) = 0. In general, we
define x− y = x+ (−y) in a commutative group.

Commutative semigroups, monoids, and groups are often called “abelian”
in honor of the mathematician Niels Henrik Abel (1802-1829) web ref.

5.10 The Category of Abelian (Commutative) Groups

The category of abelian groups, AbGprp consists of all commutative groups
with morphisms exactly the same as in Rgp.

Remark 5.5 Given a set X with an operation ·, we denote the mathematical
system consisting of the set with its operation · by (X, ·). If there are any
distinguished elements like an identity element 1, we denote the system by
(X, ·, 1), etc.

Example 5.3

• The system (N,+, 0) where N = {0, 1, 2, . . .} is the set of non-negative
integers and the operation is the usual one of addition and the identity
element is 0 is an abelian monoid.

• The system (Z,+, 0,−) where Z = {. . . ,−2,−1, 0, 1, 2, . . .} and + is
the usual operation of addition, 0 is the identity element, and − is the
usual operation for negation for inverses is an abelian group.

• The monoid in remark (5.2) consisting of all non-commutative words
in 0 and 1 with identity element idn is a monoid that is not abelian.

LetQ =
{
p
q
| p, q ∈ Z

}
be the set of rational numbers, R = {n.a0a1a2 . . . |n ∈

Z, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}} be the set of real numbers, and C = {a +
b i | a, b,∈ R, i =

√
−1 } be the set of complex numbers.

• The systems (Q,+, 0,−), (R,+, 0,−), and (C,+, 0,−) are all abelian
groups with the commutative operation of usual addition, identity ele-
ment 0, and − as inverse operation for addition.

https://en.wikipedia.org/wiki/Niels_Henrik_Abel
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5.11 The Category of Commutative Rings with Iden-
tity

A commutative ring is a system of the form (R,+, 0−, ∗) where (R,+, 0,−) is

a commutative (abelian) group and R×R ∗ // R is a commutative (abelian)
semigroup such that the following distributive laws hold.

r ∗ (s+ t) = r ∗ s+ r ∗ t (57)

(s+ t) ∗ r = s ∗ r + t ∗ r, for all r, s, t ∈ R. (58)

As usual, the multiplication operation is often written simply as juxtaposi-
tion,

A commutative ring with identity is a system (R,+, 0−, ∗, 1) (R,+, 0−, ∗)
is a commutative ring and (R, ∗, 1) is a commutative (abelian) monoid.

The category AbRng1 has objects all commutative rings with identity and

morphisms all functions R
f // S where R and S are objects in AbRng1

which are abelian group morphisms with respect to + and abelian monoid
morphisms with respect to ∗.

Exercise 5.2 Clearly, the systems (Z,+, 0,−, ∗, 1), (Q,+, 0,−, ∗, 1),
(R,+, 0,−, ∗, 1), and (C,+, 0,−, ∗, 1) are all commutative rings with identity
with respect to the usual operations indicated. Recall the quotient sets Z/n
from exercise (2.2).

Show that (Z/n,+.0,−, ∗, 1) is a commutative ring with identity for every
non-negative integer n with the operations given by

[a] + [b] = [a+ b] (59)

[a] ∗ [b] = [a ∗ b] (60)

−a = [−a] (61)

and constants 0 = [0], 1 = [1]. Hint, this amounts to showing that the
functions defining these operations are well-defined – a simple exercise in
arithmetic (when the problem is organized properly).

Remark 5.6 While non-commutative rings are studied in mathematics, only
commutative rings with identity will be considered in this particular docu-
ment.
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5.12 The Category of Fields

A field F is a mathematical system such that (F,+, 0,−, ∗, 1) is a commu-
tative ring with identity and (F − 0, ∗, 1, /) is a commutative group. Note
that the inverse is conventionally written as r−1 = 1/r (or 1

r
) and a/b (or a

b
)

is equal to a ∗ b−1. Each of Q, R, and C are fields with respect to the usual
operation of division. The ring of integers Z is not a field.

The category Fld has objects all fields and arrows all functions that
preserve the operations.

5.13 The Category of Modules over a Ring

A module M over a ring R (or an R-module as t is also called) is an abelian
group structure (M,+, 0,−) along with an operation (sometimes called an

“action”) of R on M , R×M µ //M that satisfies the properties that,
writing µ(r,m) = rm,

r(m+m′) = rm+ rm′ (62)

(r + s)m = rm+ sm (63)

rsm = r(sm) (64)

1m = m, if m has an identity element. (65)

Remark 5.7 It is worth noting at this point that if M is an abelian group,
then the set of arrows (morphisms) homAbGrp(M,M) has the structure of a
ring with identity element. The operation of addition is given by

(f + g)(m) = f(m) + g(m) (66)

and the operation of multiplication is given by

fg = f ◦ g (67)

where ◦ denoted composition of functions.
The ring homAbGrp(M,M) is usually denoted by End(M) and called the

endomorphism ring of M .

Exercise 5.3 Verify that the operations given above make End(M) into a
ring with identity. Note that, in general, the multiplication is not commu-
tative. Later, this will become clear when we identify End(M) as a ring of
matrices in special cases.
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Furthermore note that if M is an R-module, then End(M) is also and
R-module where (rf)(m) = rf(m) for a module morphism f .

Finally, verify that the function

R
ρ // End(M) (68)

r 7→ (m 7→ rm) (69)

is a ring with identity morphism. The morphism ρ is called a representation
of R on M .

The category of modules over a ring is denoted by RMod.

5.14 The Category of Vector Spaces Over a Field

For basic information about vector spaces, matrices, and linear algebra in
general, the textbooks, [10, 9, 4] are useful.

A vector space a module V over a field F . The extra operation of divi-
sion in F considerably enriches the “computational power” of vector spaces
compared to modules and this partially accounts for it prevalence as a com-
putational tool in engineering. However do not be misled into thinking that
modules are not important computationally as well. The operation of divi-
sion is quite useful when it is available, but that is not always the case.

The category of vector spaces over a field F is denoted by FV ect so that,
of course, FV ect = FMod.

Much more will be said about this category shortly.

5.15 The Free R-Module on a Set X

There is an explicit construction of a type of R-module that has useful prop-
erties shared with vector spaces. Recall that every vector space V over a field
F has a basis B ⊆ V . Bases are characterized by the fact that every linear
combination of the form

∑n
n=1 ribi where ri ∈ F and bi ∈ B is unique. If X

is a set and R is a ring, we can construct an R-module M with this “basis
property” with respect to X ⊆ M , i.e. every linear combination of the form∑n
n=1 rixi where ri ∈ R and xi ∈ X is unique.

Here is the construction. Let M be the set of all formal linear combi-
nations of the form

∑n
n=1 rixi where ri ∈ R and xi ∈ X. To make things

completely unambiguous, one can take such a linear combination to mean a



MSSRC Final Report, September 2018 28

list L of pairs (r, x) where r ∈ R and x ∈ X. Thus, for example, the linear
combination above is represented by the list

L = [(r1, x1), (r2, x2), . . . , (rn, xn)] (70)

and to be even more explicit, we can take lists to be ordered n-tuples in
n-time products of the set R × M . The additive structure on such linear
combinations is exactly as it is for vector spaces and the action of R (also
called “scalar multiplication) on M is also as it is for vector spaces. We need
the convention that in this context, there is an “empty” list and that is the
zero element of M .

We will call this construction the free R-module on X and denote it by
FreeMod(R,X).

6 A Categorical Properties of Modules Over

a Ring

Everything done in this section will be true for modules over a ring as well
as vector spaces over a field, i.e. no reference or reliance upon the operation
of division or more notably on the existence of a basis will be necessary.

Consider the correspondence Ob(RMod) D // Ob(RMod) given by

D(M) = hom
RMod(M,R). (71)

This set of morphisms is indeed another R-module since we can add such
morphisms by “adding pointwise”, i.e. (α+β)(m) = α(m)+β(m) and scalar
multiplying by (rα)(m) = rα(m) and the necessary relations can easily be
checked to see that this turns D(M) into an R-module. D(M) is most often
denoted by M∗ and is called the dual module of M . It turns out that this
correspondence is the first part of a contravariant functor. On home sets

(i.e. arrows) the correspondence D(f) = f ∗ is given as follows. If V
f //W

is a morphism and the morphism W
β // R is given, the corresponding

morphism V // R is given by f ∗(β)(v) = (β ◦ f)(v) = β(f(v)).

Exercise 6.1 Show that D is indeed a contravariant functor by proving that
it preserves composition of morphisms. It would be helpful to write out dia-
grams for all of this.
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Exercise 6.2 Show that the composition of two functors is a functor.

Much more needs to be said about the categorical properties of R-modules
and vector spaces over a field. This will have to be left to an extension of
these notes that is in preparation.

7 Cocones and a Look Toward Future Devel-

opments

A diagram in a category C is the image of a functor D
F // C . A cocone

in C over F with vertex C ∈ C is a correspondence collection of morphisms

F (z)
cx // C such that all diagrams of the form form

F (x)

cx
!!

ξ // F (y)

cy
}}

C

(72)

where ξ = F (f) and f ∈ homD(x, y) commute, i.e. cxξ = cx.
The vertex f a cocone as above is said to be a colimit if ever morphism

from and object C to another object C ′ in C which is also a vertex of a cocone
over F is uniquely determined by morphisms from the F (z) to C ′ for which
the maps within the cocone for C ′ are “compatible” with the morphisms in
the cocone for C in a sense that will be made precise in the example below.

7.1 Coequalizers

A coequalizer is a kind of colimit. The corresponding cocone involves the
category generated by the digraph (D0, D1, s, t, ids) where G0 = {x, y}, G1 =
{idx, idy, α, β}, s(a) = x and t(a) = y for a ∈ G1. Thus, G has the shape

x
α //

β
// y (73)

Since there are no path products other than the compositions yith the identi-
ties, the entire category D generated by G has the same shape. So a diagram
in C over a functor F is of the form

A
f //
g
// B (74)
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where F (x) = A, F (y) = B, F (α) = f , and F (β) = g.
A cocone with vertex C then consists of a commutative diagram

A

cx ��

ξ // B

cy��
C

(75)

where ξ ∈ {f, g}. Now note that given such a situation, we may define a
diagram

A
f //
g
// B

c // C (76)

where c = cy and then we have cf = cg from the cocone condition. Con-
versely however, if we have a diagram such as the one above, we may form a
commutative diagram

A

cx ��

ξ // B

cy��
C

(77)

where ξ ∈ {f, g} and cx = cf and cy = c. Thus the two situations are equiv-
alent. We call the object C in the situation in equation (76) a coequalizer if
for any any other diagram of the form

A
f //
g
// B c′ // C ′ (78)

where c′ with c′f = c′g there is a unique morphism C
φ // C ′ such that

c′ = φ ◦ c. Note that this means that any morphism from C to another
object C ′ is completely determined by a map c′ from B to C ′ for which
c′f = c′g.

Exercise 7.1 Translate these last statements back to the cocone situation
and realize that essentially it is saying that any map from a colimit object
is given uniquely by a map from the “parts” of the cocone of which it is the
vertex as long as some compatibility conditions are satisfied.

Colimits in Set and many other categories can be constructed using co-
equalizers. Obviously, for this to be useful, one needs to know how to con-
struct coequalizers in such categories. The basic idea is to take C = B/E
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where E is the equivalence relation generated by the relation f(a)
E
// g(a)

for all a ∈ A. Turning this into a finite effective algorithm can be done, but it
takes much more discussion than we have available at this time to understand
that. See the comments below.

8 Conclusions

From discussions with the Consortium, it does appear that category the-
ory can be a useful tool for organizing ideas in systems engineering. Much
more foundation for what is needed must be developed beyond what we have
presented here. The only constraint to that happening is time and proper
funding for this research.

Discussions with Michael Watson have indicated that categories in which
nodes and arrows are defined by time dependent stochastic processes are not
only feasible, but have the potential of being quite useful. Much more in
the direction of uncertainty quantification of categorical models for complex
systems needs to be developed, and the author of this note, based on con-
versations with members of the Consortium is convinced that such research
will be fruitful and useful in engineering in general.

8.1 A Working Definition

A working definition of “system” was given in the webinar SE Webinar. A
print version of the presentation is available at print version. In the Webi-
nar, a definition of system as a recursive colimit was given. That working
definition has been revised and can be found in sys def. The definition is
repeated here.

Definition 8.1 A cocone is atomic if all the nodes comprising it except the
vertex are considered to be indecomposable, i.e. not vertexes of cocones them-
selves.

A system is the vertex of either an atomic final cocone or a final cocone
whose nodes are recursively systems.

https://vimeo.com/259746777
http://mssrc.com/lambe/notes_se_cats.html
http://mssrc.com/lambe/papers/catMathSys_short_prnt_ver.pdf


MSSRC Final Report, September 2018 32

References

[1] Robert William Bemer. Survey of coded character representation. Com-
munications of the ACM, 12(3):639–641, 1960. 18

[2] R. Brown. Topology and Groupoids. www.groupoids.org, 2006. 9

[3] Samuel Eilenberg and Saunders Mac Lane. General theory of natural
equivalences. Trans. Amer. Math. Soc., 58(2):231–294, 1945 (at jstor).
https://www.jstor.org/stable/1990284?seq=1#page scan tab contents.
3

[4] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, Inc.,
New Jersey, 1971. Second Edition. 27

[5] G. Link. One Hundred Years of Russell’s Paradox: Mathematics, Logic,
Philosophy. De Gruyter series in logic and its applications. Walter de
Gruyter, 2004. 9

[6] Seymour Lipschutz. Schaum’s Outline of Set Theory and Related Topics.
Schaum’s Outline Series. McGraw-Hill, New York, 1967. 2

[7] S. Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer New York, 2013. second edition, (first
edition (1971). 3, 10, 22

[8] Engineering Elegant Systems: Principals of System Engineering.
https://ntrs.nasa.gov/search.jsp?R=20160003162. 2

[9] R.R. Stoll. Linear Algebra and Matrix Theory. Dover Books on Mathe-
matics. Dover Publications, 2013. 27

[10] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press,
2016. 27

[11] P. Suppes. Axiomatic Set Theory. Dover Books on Mathematics. Dover
Publications, 2012. 9


	Introduction
	Review of Set Theory
	Functions
	Inverse Image and Partitions
	Products of Sets
	Relations
	Equivalence Relations and Quotient Sets

	Some Observations Concerning Sets
	Sets as Nodes, Functions as Arrows
	The Set of All Arrows from one Set to Another
	A Small Piece of the Set Theory Graph

	Directed Graphs and Free Path Algebras
	The Free Non-Associative Path Algebra
	Degree of a Word
	The Free Path Algebra
	Identities
	The Free Path Algebra With Identities

	Categories
	Some Standard Terminology
	A Strong Correspondence Between Two Categories
	Functors
	The Dual of a Category
	Relations in a Category
	Some Basic Mathematical Categories
	The Category of Semigroups
	The Category of Monoids
	The Category of Groups
	The Category of Abelian (Commutative) Groups
	The Category of Commutative Rings with Identity
	The Category of Fields
	The Category of Modules over a Ring
	The Category of Vector Spaces Over a Field
	The Free R-Module on a Set X

	A Categorical Properties of Modules Over a Ring
	Cocones and a Look Toward Future Developments
	Coequalizers

	Conclusions
	A Working Definition


